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Abstract —A resistive bouudary condition for the case where the resistiv-

ity is assumed to be a complex quantity is shown to be an accurate model

for a superconducting film which is thin compared to the superconducting

penetration depth. The imaginary part of the conductivity is the dominant

term and is a measure of the inductive energy stored in the superconduc-

tor. Numerical solutions of superconducting microstrip have been obtained

and are compared to experimental results and to armlytic sobrtious for

superconducting parallel-plate waveguides. Excellent agreement has been

found between experimental, analytical, and numericaf results.

I. INTRODUCTION

T RANSMISSION lines using superconducting films

have many possible practical applications in micro-

wave and millimeter-wave devices and circuits [1]. The

advantages of superconducting transmission lines include

low loss and low dispersion. In addition, superconducting

microstrip can be made very small if the geometry is

chosen to give a very slow phase velocity. The very slow

phase velocity is the result of the inductance contribution

from the energy stored in the superconductor, called the

kinetic inductance ( L~). The energy is stored as the kinetic

motion of the charge carriers in the superconductor. The

slowing of an electromagnetic wave on a superconducting

transmission line due to the contribution of Lk was pointed

out by Pippard in 1947 [2]. Microstrip kM3S k which Lk k

much larger than the magnetic inductance ( Lm ) have been

fabricated [3], [4] and found to have dielectric-limited loss

and very slow phase velocities. Very compact broad-band

microwave devices and circuits such as tunable phase

shifters, filters, and delay lines can be realized using these

microstrip lines.

The measurement of this slow-wave behavior has been

used to determine the penetration depth, A, of supercon-

ducting films [5]. The penetration depth is the characteris-

tic decay length of a magnetic field into a superconductor.

Manuscript received February 17, 1988; revised June 6, 1988. This
work was supported by the Office of Naval Research.

J. M. Pond and C. M. Krowne are with the Microwave Technology

Branch, Electronics Science and Technology Division, Naval Research
Laboratory, Washington, DC 20375-5000.

W. L. Carter is with American Semiconductor, Cambridge, MA.
IEEE Log Number 8823697.

In order to achieve the very slow phase velocities reported

in [3] and [4] the superconducting film thicknesses must be

much thinner than A. In contrast to more conventional

geometries, this implies that the superconducting film is

diaphanous, meaning that the electromagnetic field on one

side of the film is determined by the film properties, the

geometry, and the electromagnetic field on the other side

of the film. Such field penetration in superconductors has

been studied analytically [6] and observed experimentally

[7] for the case of Josephson juncticns inductively coupled

to Jnicrostrip. Significant coupling of electromagnetic en-

ergy through superconducting films has been measured

even when the film thickness is as great as the penetration

depth. This field penetration obviously complicates the

solution of any electromagnetic problem, since a three-

region problem must always be solved for each supercon-

ducting film. Properties of a thin superconducting film,

thin meaning that the thickness is much less than X, can

be accounted for by a complex conductivity. Thus, as will

be shown in the next section, it is possible to model these

very thin superconducting films by using the resistive

boundary condition [8]. The resistive boundary condition

allows a reduction in the complexity of the problem being

solved, from a three-region problem with field matching at

two interfaces to a two-region problem with a new field

matching condition, determined by the film properties, at

one interface. The conductivity of the layer, rather than

representing only a loss term, is a complex quantity where

the real part corresponds to the conductivity of the normal

electrons (in the two-fluid model) or quasiparticles (in BCS

theory). Thus, the real part of the conductivity represents

the energy loss in the film. The imaginary part of the

conductivity is related directly to the superfluid (in the

two-fluid model) or Cooper pair (in BCS theory) compo-

nent of the current. The imaginary component is de-

termined by A and represents the inductive energy stored

within the film.

There is always a small amount of energy stored within

any conductor, but only for superconductors can a signifi-

cant proportion of the energy be stored this way without
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incurring losses which would be prohibitive in a transmiss-

ion line structure. This can most easily be seen by apply-

ing the two-fluid model [9] to a conductor of unit length

with a cross-sectional area A. In the simplest case [10], the

conduct ante is

G = nne2Ar/m (1)

and the dominant inductive susceptance is

l/(QL~) = n~ce2A/mco (2)

where m, e, and T are the mass, charge, and collision time

of an electron. The densities of the normal and supercon-

ducting electrons are given by n. and n ,C, respectively.

The normal and the superconducting electrons act as

parallel conduction mechanisms. Since n ~c/ti >= n ~r, ex-

cept for temperatures very close to the critical temperature

(Tc), the susceptance is larger than the conductance. In the

normal state n ~ = O and the inductive susceptance, using

the Drude model [9], is given by

l/(uLk) = nne2A~(ti~)/m. (3)

Since for microwave frequencies a r <<1, it is obvious that

the energy stored will greatly exceed the energy lost only in

the superconducting state.

This paper demonstrates the application of the resistive

boundary condition to solve for the propagation constant

for the case of two parallel sheets described by complex

resistive boundary conditions. Solutions for electromag-

netic propagation in a trilayer consisting of a lossy dielec-

tric between two superconducting films have been pre-

sented for both the simple two-fluid model [11] and the

Mattis–13ardeen theory for complex conductivity [12]. The

solutions derived using the resistive boundary condition

are shown to be equivalent, as they must be, to the

solution for the arbitrary thickness case in the limit where

the film thickness is less than A. The motivation for

introducing the resistive boundary condition, however, is

not to solve a configuration for which a solution already

exists. Rather, the purpose is to introduce a technique

which can be applied in a numerical formulation of trans-

mission line structures for which closed-form solutions are

not tractable and for which existing numerical approaches

are inadequate.

From a practical viewpoint, microstrip, slotline, coplanar

strip, and coplanar waveguide are the transmission struc-

tures of interest. Traditional numerical approaches [13]-

[16] to these structures are not easily applied to very thin

superconductors due to the coupling of the fields which

can exist from one side of the superconducting film to the

other. A new formulation, based on a generalization of the

spectral-domain method [15] for the solution of transmis-

sion line structures, is presented. A numerical formulation

which has been implemented to solve for a microstrip

transmission line structure is then discussed.

The results of the microstrip numerical solution for the

complex resistive boundary condition are compared with

the analytical solution for a superconducting parallel-plate

waveguide and with experimental results. The agreement

between the analytical predictions for the parallel-plate

case and the measured values for the microstrip is excel-

lent, as has been discussed earlier [4]. A comparison of

these results with the numerical results using the complex

resistive boundary condition is used to establish the valid-

ity of this application of the boundary condition and the

numerical formulation. Thus, this technique can be used to

investigate a wide variety of practical transmission line

structures where thin superconducting films are practicaJ

but neither conventional analytic approaches nor tradi-

tional numerical formulations are applicable. In particular,

the formalism can be used to determine the propagation

properties of slotline, coplanar strip, and coplanar wave-

guide.

11. THEORY

The macroscopic theory of electromagnetic fields in

superconductors is well understood [9], [17] and can be

related to simple macroscopic properties. In the short

presentation to follow, it is assumed that the two-fluid

model and the London equations are valid. This means

that the electromagnetic properties of a superconductor

can be accounted for by a temperature-dependent complex

conductivity. Other expressions for a complex conductiv-

ity, based on BCS theory, are available and are discussed

in the Appendix. The BCS derived expressions are theoret-

ically based rather than phenomenologically based and are

applicable to both local and nonlocal superconductors. For

local superconductors and even many nonlocal supercon-

ductors, however, the two-fluid description is usually ade-

quate. In particular, the experimental results to be pre-

sented later are for microstrip lines fabricated from

niobium nitride (NbN), which is a local superconductor.

The current in a superconductor, according to the two-

fluid model, can be written as

J= J~+& (4)

where J. is the current due to the normal electrons and J,c

is the current due to the superconducting electrons. Ohm’s

law applies to the normal electrons,

~ = a~E (5)

while J~c is governed by the London equations,

a~c E

at = /loA~
(6)

and

VX4C=.E
A2“

(7)

Assuming an eJ”t time dependence, the Maxwell equations

and London equations yield a wave equation,

T72H= (~-z+
)JupOoE – 02P06 H. (8)

Thus a complex conductivity can be defined:

o = v. – ju,C (9)

where

*,c=(upoA2)-1. (lo)
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The Appendix discusses the two-fluid model as well as

other models of complex conductivity y for superconductors.

However, irrespective of the conductivity model used, (8)

can be applied to describe the electromagnetic properties

of a superconductor,

The resistive boundary condition [8] is an approximate

boundary condition in electromagnetic theory. It has been

used to treat thin lossy dielectric sheets with large conduc-

tivities where the thickness (t) is much less than a wave-

length. The resistance, in Q/square, of such a sheet is

given by

R = l/et. (11)

Solving the electromagnetic field problem for such a sheet

can be reduced from a problem of matching fields at two

surfaces to matching fields at one surface if it is assumed

that

lim ‘=R. (12)
t+o VtL7+m

Using the notation that + and – superscripts refer to the

field components of E and H on, respectively, the top and

the bottom of the resistive sheet, the boundary conditions

for the electromagnetic field become

fix(E+-E-)=O (13)

iix(H+-H”) =~=-(l/R)fix(fi XE*) (14)

where fi is a unique unit normal vector to the resistive

interface.

In the case of a superconducting thin film where the film

thickness, t.c,is small compared to the characteristic

penetration lengths in both the normal and the supercon-

ducting state, the use of this approximate boundary condi-

tion is valid. Specifically, the cases of interest are those for

which t<< A and t<<8,where 8 is the classical skin depth,

given by

8 = [2/(@peon)] 1’2. (15)

Thus, the surface resistance is given by

R = [t,c(u. – ja,C )]-l. (16)

Even though the resistivity is now a complex quantity, it

will still be referred to as a complex resistive boundary

condition, since the term impedance boundary condition

refers to an entirely different boundary condition [8]. To

demonstrate the applicability of this technique to a simple

but useful and instructive case, the analytic solution to a

parallel-plate transmission line structure will be presented

in the following section.

III. PARALLEL-PLATE TRANSMISSION LINE

In the following discussion all resistive boundary condi-

tions, R,, are assumed to have an imaginary part, Im(Ri),

which is much larger in magnitude than the real part,

Re(RL). The parallel-plate structure, shown in Fig. 1,

consists of two resistive boundary conditions, RI at x =

d/2 and R3 at x = – d/2, and is assumed to have an

/

x

LL
z 2

Y /’

Fig. 1. Parallel-plate transmission line wi th resistive boundary condi-
tions, RI and R3, separating dielectric regions Cl and (2 at x = d/2
and dielectric regions .+ and (3 at x = – d/2, respectively. Field

quantities were assumed to be functionrdly independent of y and to be

propagating in the z direction.

electromagnetic wave propagating in the positive z direc-

tion of the form e~(”’-az) with Re(a) >0 and Irn(a) <O.

All field components are assumed to be independent of the

y direction. A TM soluti,on will be assumed, i.e., HX =

H== Ey = Jy = O. Thus the parallel-plate solution derived

will have a field pattern closely approximating a very wide

microstrip or suspended stripline. The half-space x > d/2

is described by cl, and Vo, and the half-space x < – d/2 is

described by C3 and PO. The region between the sheets is

described by PO and t‘. Since the resistive boundary

conditions are penetrable, it will be assumed that ~‘ > c1

and c‘ > c~. This ensures that the fundamental mode is

primarily between the plates. Components of the electro-

magnetic field which can exist in each of the regions

(i= 1,2,3) are given by [11]

EX = Ci+ekz’ + Ci–e-ktx (11)

E== – (jki/a)Cyek,x+ ( jki/a)Ci-e-k’x (18)

Hy= (a’ – k2)/(atipo)EX (19)

where in each region

k?= a’ – U’pot,, i=l,2,3. (20)

The unknown complex constants, Ci- and C:, are de-

termined by matching the fields. The value of ki is as-

sumed to be the root given by (20), which has a positive

real part. In regions 1 and 3 only Cl– and C3+, respectively,

can exist if the fields are to be finite. Thus, there exist four

unknown coefficients and two boundary conditions given

by (13) and (14) to be imposed at leach resistive boundary.

Solving the four equations simultaneously gives a tran-

scendental equation for a, which is given by

(A+ f,)g’cosh(k’d) + (d +fJ3)Sinh(kzd) = O (21)

where

fi= g, - .i@Po/Rtj i=l,3 (22)

gi=(a2–kf)/ki, i=l,2,3. (23)

To solve for the fundamental mc~de, the only mode to be

discussed in this paper, an approximate expression can be

derived which yields very accurate results for very wide

microstrip. For the fundamental mode, k ‘d <<1. Further-



184 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL. 37, NO. 1, JANUARY 1989

more, under situations for which

lwo/~11 >> Igll, i=l,3 (24)

l(wo)2/(wJ l>>lal’ (25)

(21) reduces to an equation for a which is given by

a’= ti2pocz[l– j(Rl\upod)– j(ll+opocl )]. (26)

If it is further assumed that U,C>> u., then a is approxi-

mately given by

a’= U2POC2[1+ A~/dtl + A\/dt2] (27)

where Al and A ~ refer to the penetration depths of the

films at x = d/2 and x = – d/2, respectively. The thick-

nesses of these films are tland t2, respectively. It should

be noted that a increases rapidly as T-+ TC, due to the

strong temperature dependence of A, given in (Al).

The expression for a given by (26) is independent of

both c1 and 63. This implies that, in the reduction of a to

the approximate form, the fields in the exterior dielectric

regions become negligible. This is a result of the special

nature of this particular one-dimensional problem in the

limits investigated, and is not generally true for supercon-

ducting films which are thinner than a penetration depth.

In fact, analytical results [6] for two parallel-plate struc-

tures with one common thin plate show that significant

coupling through the common plate can occur if the plate

is thinner than a penetration depth. Recently, experimental

measurements have been made [7] which confirm coupling

through thin films arranged in this way.

It is now possible to show that the approximations

which lead to (26) are valid for situations of practical

interest. The assumption that k2d <<1 leads, using (20)

and (27), to an upper frequency limit given by

c.’
(28)

Q < d [( A:/dtl) + (A~/di2)]”2

where C2 is the speed of light in an infinite medium of ~‘.

It is now easy to show that (24) and (25) are valid for the

derivative of (26). Noting that 62> c1 and (2> C3, it fol-

lows that if

l@Po/~zl =’ Ig’1, i=l,3 (29)

then (24) and (25) are also satisfied since Igll > Igll and

Ig’1 > lg~l- using (20) and (27), the relationship in (24) can
be written as

~i/~~ >> (@/c2)[~?/(d~l)+ ~>/(dt2)] ““, i=l,2.

(30)

The relationship for an upper frequency limit given by (28)

can now be applied. Hence, (30) can be written as

“/A~ > A:[l+(A::)/(A:t,)l ‘

(

2 ifi=l
i=l,2; j=

1
(31)ifi=2

which is obviously true for all real values. Thus, all ap-

proximations made to arrive at the closed-form expression

of (26) are valid provided that the frequency is small

enough to satisfy (28).

This problem has also been solved for superconducting

layers of arbitrary thickness [11], [12], [17]. Hence, the

solution presented above is a limiting case of existing

expressions. The solution for superconducting films of

arbitrary thickness is given by

a2 = U2poE2[l + (A1/d)coth(tl/Al)

+( A2/d)coth(t2/A2)] . (32)

If t/A< 1 then coth(t/A) = A/t and consequently (32)

reduces to the expression just derived using the complex

resistive boundary condition. Furthermore, the frequency

limitation given by (28) is the same as the one given in [11]

under the same thin-film limit.

The losses in the transmission line can come from two

sources: the dielectric loss and the superconductor loss.

The dielectric losses are related directly to the dielectric

loss tangent of the dielectric layer between the supercon-

ducting films. For small values of the dielectric loss tan-

gent and assuming that the superconductor losses are zero,

(27) gives

Im(a)=~(poRe(c2))

1’21+2+21

. [Im(c,)/Re(t2)]. (33)

The superconductor losses can also be determined from

(26) assuming that the losses are small and the dielectric

losses are zero. Using (26) and assuming UI,C >> al. and

UJ,C>> 02., the dominant term of the imaginary part of a
is found to be

Ire(a) = – [ti2/(2d)] (poc2)l’2

Po%wtl + Po%nwt’

“ [1+ A:/(dtl)+ A\/(dt2)]”2 “ ’34)

These expressions ((33) and (34)) agree with earlier expres-

sions [11] if A, >> t, (i =1, 2). These expressions show a

very strong dependence on T as TC is approached.

IV. MICROSTRIP AND STRIPLINE

The rnicrostrip geometry shown in Fig. 2 can be solved

using a modified spectral-domain immittance [13] ap-

proach based on the transverse resonance method. After

developing the appropriate equations to account for the

complex resistive boundary condition, the numerical re-

sults for the geometry shown in Fig. 2 will be compared to

the results for the infinitely wide parallel-plate case, which

was presented in the previous section.

The general formulation [18] begins with the description

of the electric field, E, given in terms of a dyadic imped-—
ante Green’s function, ~, and the currents, J. Hence E is

given by

E(r) = ~~(r, r’) .J(r’) du’ (35)
u
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Fig. 2. Geometry of theproblem which wasnmnerically implemented.

A fipite width (w) strip with a resistive boundary condition, RI, is

separated from a perfectly conducting ground plane by a dielectric, C2,
of thickness d/2.

where the integral is over_the currents in the strip. The

dyadic Green’s function, ~(r, r’), describes the dielectric

layer structure and also takes into account the perfectly

conducting ground plane. Since the structure is infinite in

the propagation direction, z, the electric field at the strip

interface, from (35), reduces to

E(y)= j ‘/2 z(y, y’) .~(y’) dy’ (36)
– w/2

where Y,(y) is the vector surface current. A generalization

of earlier work [13] must now be made to account for the

boundary condition on the strip. Using (13) and (14) for

the values of the tangential electric field on the strip, two

coupled equations for the surface currents, J,X( y) and

J,z( y), can be derived from (36) for – w/2< y < w/2 and

are given by

J::2[ZYY(Y7Y’)J$Y( Y’)+ ZYZ(Y,Y’)J,Z(Y’)] ~Y’

= E,(y)= =,,(Y) (37)

and

J::2[ZZY(Y>Y’)JS, (Y’)+ ZZZ(Y>Y’)JSZ(Y’)] ~Y’

=Ez(y) ‘~,z(y). (38)

A one-dimensional Fourier transform is defined as

i({) =j@ A(y)e-J{Ydy (39)
—m

where the - over a variable denotes the Fourier trans-
form of that variable without the -. Since the current

components are identically zero for y < – w/2 and y >

w/2, the left-hand sides of (37) and (38) present no prob-

lems in performing the Fourier transforms. For the riglit-

hand sides it should be noted that the electric field is

nonzero everywhere. The tangential components of the

electric field on the plane x = O are defined as

E,O = EJO+ E,: (40)

and

where

Therefore, the

given by

[-qy(o

EYO= Ejo + EjO

–w/2<y <w/2

y<–w/2andy> w/2 )

–w/2<y<w~!

y<–w/2andy> w/2
)

185

(41)

a=y, z

(42)

a=y>z.

(43)

Fourier transforms of (37) and (38) are

“~] z,(r)+ ~y=(r)iz(() = ~,;(() (44)

2zy(oiv(()+ [2:z(t)-R:lz z(() =~;(~). (45)

The forms of (44) and (45) are identical to previous formu-

lations if R is identically zero. Thus, by modifying the

Fourier-transformed impedance Green’s functions so that

~JY({) and ~,.(~) me replacetil by ~YY({) – R and

Z=Z({) – R, respectively, the problems of interest can be

solved using established numerical techniques.

The elements of the dyadic impedance Green’s function

in the transform domain are determined using the

spectral-domain immittance approach [14]. The currents

are expanded in a set of basis functions [16] under the

assumption that perfect electric walls exist at y = + b/2

such that

.J,Z(y) = (1- (2y/w)2)-”2 ~ ancos(2m7ry/w),
~=()

0< y < w/2 (46)

J,,(y) = (1- (2y/w)2) ““2 ~ bmsin(2nzny/w),
~=1

0< y < w/2 (47)

where am and b~ are unknown and each term satisfies the

edge condition. The Fourier transforms of (46) and (47)

are then substituted into (44) and (45). A Galerkin ap-

proach [16] was used to construct a determinant equation

for the unknown complex propagation constant, a. The

computer code was a modified version of the computer

code used in [15].

V. EXPERIMENTAL MEASUREMENTS

Experimental results have been reported [3], [4] for

microstrip lines, as shown in Fig. 3, operating in a Lk

dominated regime. A short smiunary of the geometry,

fabrication, and measured results is presented below to

facilitate the comparison of the analytical and the numeri-

cal approach to the actual measured results. The devices

consisted of a NbN ground plane and a NbN strip sep-

arated by a Si dielectric. A ground plane was made by RF
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SPUTTERED DIELECTRIC

Fig. 3. Geometry of the microstrip on which experimental measure-
ments were made.

sputtering 150 ~ of NbN onto a quartz substrate. The

dielectric consisted of an RF-sputtered thin film of hydro-

genated Si which ~was deposited in two steps for a total

thickness of 450 A. The strip was deposited ~n the same

fashion as the ground plane but was only 140A thick. This

top film was then patterned to define 25-pm-wide micro-

strip lines of various lengths.

Extensive time- and frequency-domain measurements

have been made with these devices [3], [4] and their behav-

ior was found to correlate very well with calculations of

the parallel-plate waveguide case for superconducting

layers of arbitrary thickness (32). This is not surprising,

considering that the width-to-height ratio of the microstrip

is over 500 and that fringing field contributions should be

negligible. In particular, the temperature dependence of

the propagation constant follows the behavior predicted by

the two-fluid model }0 within the experimental accuracy.

Assuming two 145 A NbN films, the parameters of the

lines were determined to be TC= 12.15 K, AO = 3200 &

and csi =10.5. These values were derived during earlier

work [4], where a best fit of the measured response as a

function of frequency and temperature was made to a

circuit model. They are all reasonable values for the thin

sputtered films. Losses in the lines were limited by the

dielectric.

VI. RESULTS

Correlation between analytical, numerical, and experi-
mental results was excellent for these structures. When

comparing analytical, numerical, and experimental results,

it should be noted that there existed some slight dif-

ferences in the geometries that were solved. The analytical

results, based on (27), considered the case of an infinitely

wide parallel-plate waveguide where all fields were as-

sumed to be independent of the transverse y direction.

Experimental results were obtained from the microstrip

configuration shown in Fig. 3 at 0.5 and 1.0 GHz. Since

the width-to-height ratio of the microstrip was greater than

500, the parallel plate was expected to provide a good

approximation for the dominant mode.

-———.———-—.—.——.— -————————————-——.

d

[

e2

/“ _R’ ______

‘$1

Fig. 4. Equivalent suspended stnpline geometry of Fig. 2 using image

theory of the perfectly conducting ground plane.

The structure solved numerically was actually a different

geometry from both the analytical and the experimental

geometry. For the numerical solution a strip of finite width

was modeled as a complex resistive boundary condition

separated from a perfectly conducting ground plane by a

dielectric layer as shown in Fig. 2. In order to have the

numerical geometry approximate the analytical geometry,

the perfectly conducting ground plane was treated as an

image plane, which for a very wide strip will approach the

parallel-plate geometry. In addition, this geometry is easier

to implement numerically than the actual microstrip con-

figuration shown in Fig. 3. The resultant transmission line

was a suspended stripline as shown in Fig. 4 with a

dielectric thickness which was twice the distance between

the strip and the perfectly conducting ground plane of the

numerical geometry. Once again, due to the very large

value of the width-to-height ratio, the approximation

should be quite accurate. Of course, the characteristic

impedance value would differ by a factor of two.

A comparison of the Re (a) at 1.0 GHz for the analyti-

cal, numerical, and experimental data is shown in Fig. 5 as

a function of temperature for the geometries that most

closely approximated the experimental case. In each situa-

tion the superconducting and dielectric film parameters

mentioned in the previous section were used in the analyti-

cal and numerical models. For the numerical case the

width of the line was set at 25 pm and the first five terms

of the basis function expansions for the currents were

used. As can be seen from Fig. 5, the agreement between

all three cases was excellent. The slight differences were

attributed to the small discrepancies of the geometries, to

the experimental accuracy, and to numerical limitations. In
all cases presented, the quantity b/w was chosen so there

was minimal sensitivity on the propagation coefficient.

The above case demonstrates the validity of the numeri-

cal formulation that has been developed. The correlation

of the analytical and numerical results for geometries

which are not as severe with respect to the width-to-height

ratio was also good but, as expected, deteriorated as the

width-to-height ratio approached unit y. When the dielec-

tric thickness of the suspended stripline was increased to

4.5 pm (a factor of 100 increase) a situation existed where

the kinetic inductance contribution was of the same order

as the magnetic inductance contribution. Values of Re ( a )
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Fig. 5. Acomptisonof theexperimentrd (o), numerical (=), and ana-

lytical ( —) results as a function of temperature is shown for

geometries which most closely approximate the experimental case. The

value of b/w is4.O.
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Fig. 6. A temperature-dependent comparison of the red part of the

propagation coefficient is shown between the numerical solutions
for superconducting stripline (*) and perfectly conducting stripline

(———–). ‘rhe strip is 25 ~rn wide, the dielectric thic~ess is 4.5 ~rn>
and b/w is 4.0. Also plotted are the analytical solutions to the
superconducting ( —) and perfectly conducting (----) parallel-plate

cases.

versus temperature for this case are shown in Fig. 6 at 1.0

GHz. The analytical parallel-plate results are compared to

the numerical results using five terms of the basis function

expansion. The agreement was within a few percent eyen

in this case, where the width-to-height ratio (about 5.5) is

not nearly as severe. In situations where the width-to-height

ratio is not too large, there usually exist some fringing

i- 100
z
a

~

0 80
0

I

IL*-. --------------------------------

t

# OF TERMS OF CIJRRENT BASIS

FUNCTION EXPANS1ON

Fig. 7. The monotomic convergence (*) of the numerical solution is
plotted as the number of terms of the basis function expansion is

increased and approaches but does not converge to the analytical

parallel-plate solution (———). The b/w, value is 4.0.

fields which tend to be influenced by the lower value of the

relative permittivity of dielectric layer above the strip. This

usually results in a lower value of Re ( a ) than would

otherwise be expected when compared to the parallel-plate

situation. Interestingly, the numerical values of Re ( a )

were slightly higher than the analytical prediction. It is

possible that this phenomenon was due to the singular

behavior of the currents at the edge of the strip, which may

increase the kinetic inductance contribution over that pre-

dicted by the analytical solution and result in a larger

value of Re ( a ). For comparison purposes, the numerical

solution for a perfectly conducting strip at 1.0 GHz and

the analytical solution for a perfectly conducting parallel-

plate waveguide are also plotted in Fig. 6. It can be seen

that the propagation constant for the strip is less than the

parallel-plate case, as would be expected from the fringing

field behavior and the lower relative dielectric constant of

the medium above the strip.

A study of the convergence of the numerical solution as

a function of the number of terms of the basis function

expansion has been undertaken. Results, shown in Fig. 7,

demonstrate that the solution monotonically approaches

the value predicted by the analytical parallel-plate model.

The particular case presented here used the same geometry

and film parameters as the case presented in the above

paragraph, although other cases behaved similarly. In all

situations examined to date, the convergence has occurred

within four to six terms of the current basis function

expansion. Using more than six terms yields no further

improvement and sometimes, if the number of basis func-

tion terms exceeds about ten, the solution can diverge.

This is attributed to accumulated numerical errors.

As another example, the results at 1.0 GHz of a geome-

try where the width-to-height ratio is approximately unity

are presented in Fig. 8. The dielectric thickness and film

parameters were kept the same as in the previous case, but

the width of the strip was reduced to 5 pm. Convergence

behavior was similar to that of the earlier cases. As the
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Fig. 8. A temperature-dependent comparison of the reaf part of the

propagation coefficient is shown between the numericaf solutions
for superconducting stripline (.) and perfectly conducting stripline

( —). The strip width is 5 pm, the dielectric thickness is 4.5 pm,
and the b/MJ vahre is 20.0. Also plotted are the analyticrd solutions to

the superconducting (————) and perfectly conducting (-- --) paraf-
lel-plate cases.

width of the strip decreased the accuracy of the parallel-

plate model was expected to decrease. Indeed, this was the

case, as can be seen in Fig. 8. Numerical results for the

stripline predict a propagation constant about 12 percent

larger than that predicted by the parallel-plate model. A

comparison can be made to the perfectly conducting situa-

tions, which are also shown in Fig. 8. As before, the

numerical value for the superconducting strip, rather than

being smaller than the parallel-plate prediction due to

fringing fields, was larger than the parallel-plate predic-

tion. This was in contrast to the perfectly conducting cases,

where the propagation constant of the strip was less than

that for the parallel-plate waveguide. Such behavior was

even more pronounced than in the case shown in Fig. 7.

This was attributed to a greater percentage of the currents

being in the singular regions at the edges of the strip for a

narrower strip. As expected, the numerical results were

virtually unchanged from 0.5 to 5.0 GHz.

Superconducting losses were also calculated and the
agreement with the parallel-plate theory was good. In the

cases considered so far, the dielectric loss was dominant

since this was the limiting loss mechanism from the experi-

mental results. In an artificial case, that of no dielectric

loss, the behavior of the superconducting loss as a function

of temperature was determined numerically and is shown
in Fig. 9. Also shown is the theoretical behavior of Im ( a )

versus temperature for the parallel-plate case using (34).

The agreement between the finite width and infinite width

cases was very good. Except for the loss terms, the film

parameters and geometry were the same as those described

above to calculate the curves of Fig. 6. The strong depen-

t-
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Fig. 9. The temperature dependence of the superconducting losses

(ln [Ire(a)]) is plotted to compare the analytical predictions using the

parallel-plate waveguide ( —) and the numerical results (=) from the

suspended stsipfine case. The two-fluid model for complex conductivity
was used. The strip width was 25 pm, the dielectric thickness was 4.5
pm, and the b/w vahre is 4.0. The value of o., was chosen to be
1 x 106 (Q. m)- 1 and the dielectric loss was set to zero.

dence of the loss on T as T- TC can be expected from

(A2) and (A3).

VII. CONCLUSIONS

A novel use of the resistive boundary condition in the

solution of electromagnetic transmission and scattering

problems involving thin superconducting films has been

presented. The solution to the parallel-plate waveguide

problem was presented and was shown to agree with the

solution using more traditional approaches. The use of this

boundary condition leads to a modification in the

Fourier-transformed coupled integral equation formula-

tion of planar transmission line problems. The Fourier-

transformed dyadic impedance Green’s function of the

coupled integral equations was modified by the complex

resistive boundary condition. To document the power of

this approach, the microstrip problem was solved numeri-

cally using the Galerkin method. Comparisons between the

analytical, numerical, and theoretical results showed excel-
lent agreement.

The boundary condition and numerical formulation pre-

sented in this paper are also applicable to slotline, coplanar

stripline, and coplanar waveguide, where conventional ap-

proaches are inadequate since they are unable to treat the

diaphanous nature of the thin superconductor. Since the

propagation constants of these transmission lines are vari-

able with temperature (and, in principle, electronically),

they have many potential uses as microwave components

such as tunable filters and variable phase shifters. Future

work will focus on determining the propagation properties

of these transmission lines in addition to microstrip.
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APPENDIX

There exist several sets of expressions to describe the

complex conductivity of a superconductor. Several of these

are phenomenological including the two-fluid models of

Gorter and Casimir and the Ginzburg-Landau model [9].

The two-fluid model will be emphasized in this paper since

it is a good model for the observed behavior of the

superconducting thin films used in the experimental part

of the work. The Ginzburg-Landau model is applicable

for T very close to but less than T=, but this is less useful

since the transmission structures of interest become quite

Iossy at these temperatures. The BCS derived model for

complex conductivity of Mattis and Bardeen is theoreti-

cally based and can be applied to both local and nonlocal

superconductors. Any of these particular models for com-

plex conductivity can be used to calculate the resistive

boundary condition.

In the two-fluid model, A can be related to the density

of the super electrons by

X2=m/(e2rz,CpO) (Al)

with n,C being the density of the superconducting elec-

trons. The temperature dependencies of the conductivities

for the two-fluid model are given by [9] from the tempera-

ture dependencies of the normal and super electron densi-

ties:

u.= u~C(T/TC)4 (A2)

and

rr,C = [1– (T/TC)4]/(q@~) (A3)

where u~c is the conductivity y just above the critical temper-

ature, TC, and A ~ is the penetration depth at 0.0 K. A more

accurate model, using the BCS derived conductivity [19],

gives

:=;~mdEIF(E)-F( E+ fiti)l
u

E2+A2+FJUE

“ (E2_ A2)’/2 [( E+ttU)2-A2]”2

1 hu-A
+—

Jho 4
dE[l-2F(hti-E)]

huE– E2– A2

“ (E2_ A2)’/2[( fiti _ ~)2_ A2]’/2

oSc 1A
—.—

/~c tlti A- fiw, -A
dE[l-2F(E+hu)]

o

E’+ A2 + huE

“ (*’_ ~2)’/2 [( E+h)2-A2]1’2

where

~(E) =[l+exp(~/k~)]-’

(A4)

(A5)

(A6)

and A = A(T) is the energy gap parameter. The second

integral of (A4) is zero when h ~ < 2A. The lower limit of

189

(AS) becomes – A when hti > 2A. The relationship be-

tween the two theories can be established by noting [20]

that for the local theory

A = ~Eyo (jopoar) ‘1’2. (A7)

By choosing AO, A.= A(T = O), and rJ~Cto satisfy

A’. = [&@rpouncAo)]”2 (A8)

the two-fluid model and the Mattis–Bardeen theory can be

compared.
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