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On the Application of Complex Resistive
Boundary Conditions to Model
Transmission Lines Consisting
of Very Thin Superconductors

JEFFREY M. POND, MEMBER, IEEE, CLIFFORD M. KROWNE, SENIOR MEMBER, IEEE,
AND WILLIAM L. CARTER

Abstract — A resistive boundary condition for the case where the resistiv-
ity is assumed to be a complex quantity is shown.to be an accurate model
for a superconducting film which is thin compared to the superconducting
penetration depth. The imaginary part of the conductivity is the dominant
term and is a measure of the inductive energy stored in the superconduc-
tor. Numerical solutions of superconducting microstrip have been obtained
and are compared to experimental results and to analytic solutions for
superconducting parallel-plate waveguides. Excellent agreement has been
found between experimental, analytical, and numerical results.

I. INTRODUCTION

RANSMISSION lines using superconducting films

have many possible practical applications in micro-
wave and millimeter-wave devices and circuits [1]. The
advantages of superconducting transmission lines include
low loss and low dispersion. In addition, superconducting
microstrip can be made very small if the geometry is
chosen to give a very slow phase velocity. The very slow
phase velocity is the result of the inductance contribution
from the energy stored in the superconductor, called the
kinetic inductance (L;). The energy is stored as the kinetic
motion of the charge carriers in the superconductor. The
slowing of an electromagnetic wave on a superconducting
transmission line due to the contribution of L, was pointed
out by Pippard in 1947 [2]. Microstrip lines in which L is
much larger than the magnetic inductance (L,,) have been
fabricated [3], [4] and found to have dielectric-limited loss
and very slow phase velocities. Very compact broad-band
microwave devices and circuits such as tunable phase
shifters, filters, and delay lines can be realized using these
microstrip lines.

The measurement of this slow-wave behavior has been
used to determine the penetration depth, A, of supercon-
ducting films [5]. The penetration depth is the characteris-
tic decay length of a magnetic field into a superconductor.

Manuscript received February 17, 1988; revised June 6, 1988. This
work was supported by the Office of Naval Research.

J. M. Pond and C. M. Krowne are with the Microwave Technology
Branch, Electronics Science and Technology Division, Naval Research
Laboratory, Washington, DC 20375-5000.

W. L. Carter is with American Semiconductor, Cambridge, MA.

IEEE Log Number 8823697.

In order to achieve the very slow phase velocities reported
in [3] and [4] the superconducting film thicknesses must be
much thinner than A. In contrast to more conventional
geometries, this implies that the superconducting film is
diaphanous, meaning that the electromagnetic field on one
side of the film is determined by the film properties, the
geometry, and the electromagnetic field on the other side
of the film. Such field penetration in superconductors has
been studied analytically [6] and observed experimentally
[7] for the case of Josephson juncticns inductively coupled
to microstrip. Significant coupling of electromagnetic en-
ergy through superconducting films has been measured
even when the film thickness is as great as the penetration
depth. This field penetration obviously complicates the
solution of any electromagnetic problem, since a three-
region problem must always be solved for each supercon-
ducting film. Properties of a thin superconducting film,
thin meaning that the thickness is much less than A, can
be accounted for by a complex conductivity. Thus, as will
be shown in the next section, it is possible to model these
very thin superconducting films by using the resistive
boundary condition [8]. The resistive boundary condition
allows a reduction in the complexity of the problem being
solved, from a three-region problem with field matching at
two interfaces to a two-region problem with a new field
matching condition, determined by the film properties, at
one interface. The conductivity of the layer, rather than
representing only a loss term, is a complex quantity where
the real part corresponds to the conductivity of the normal
electrons (in the two-fluid model) or quasiparticles (in BCS
theory). Thus, the real part of the conductivity represents
the energy loss in the film. The imaginary part of the
conductivity is related directly to the superfluid (in the
two-fluid model) or Cooper pair (in BCS theory) compo-
nent of the current. The imaginary component is de-
termined by A and represents the inductive energy stored
within the film.

There is always a small amount of energy stored within
any conductor, but only for superconductors can a signifi-
cant proportion of the energy be stored this way without
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incurring losses which would be prohibitive in a transmis-
sion line structure. This can most easily be seen by apply-
ing the two-fluid model [9] to a conductor of unit length
with a cross-sectional area A4. In the simplest case [10], the
conductance is

G=ne’At/m

M
and the dominant inductive susceptance is

1/(wL,) =nge’4d/meo

2)
where m, e, and 7 are the mass, charge, and collision time
of an electron. The densities of the normal and supercon-
ducting electrons are given by n, and n_, respectively.
The normal and the superconducting electrons act as
parallel conduction mechanisms. Since ng /w > n,r, ex-
cept for temperatures very close to the critical temperature
(T.), the susceptance is larger than the conductance. In the
normal state n,=0 and the inductive susceptance, using
the Drude model [9], is given by

1/(wL,) =ne*r(wr)/m.

(3)
Since for microwave frequencies wr < 1, it is obvious that
the energy stored will greatly exceed the energy lost only in
the superconducting state.

This paper demonstrates the application of the resistive
boundary condition to solve for the propagation constant
for the case of two parallel sheets described by complex
resistive boundary conditions. Solutions for electromag-
netic propagation in a trilayer consisting of a lossy dielec-
tric between two superconducting films have been pre-
sented for both the simple two-fluid model {11] and the
Mattis—Bardeen theory for complex conductivity [12]. The
solutions derived using the resistive boundary condition
are shown to be equivalent, as they must be, to the
solution for the arbitrary thickness case in the limit where
the film thickness is less than A. The motivation for
introducing the resistive boundary condition, however, is
not to solve a configuration for which a solution already
exists. Rather, the purpose is to introduce a technique
which can be applied in a numerical formulation of trans-
mission line structures for which closed-form solutions are
not tractable and for which existing numerical approaches
are inadequate.

From a practical viewpoint, microstrip, slotline, coplanar
strip, and coplanar waveguide are the transmission struc-
tures of interest. Traditional numerical approaches [13]-
[16] to these structures are not easily applied to very thin
superconductors due to the coupling of the fields which
can exist from one side of the superconducting film to the
other. A new formulation, based on a generalization of the
spectral-domain method [15] for the solution of transmis-
sion line structures, is presented. A numerical formulation
which has been implemented to solve for a microstrip
transmission line structure is then discussed.

The results of the microstrip numerical solution for the
complex resistive boundary condition are compared with
the analytical solution for a superconducting parallel-plate
waveguide and with experimental results. The agreement
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between the analytical predictions for the parallel-plate
case and the measured values for the microstrip is excel-
lent, as has been discussed earlier [4]. A comparison of
these results with the numerical results using the complex
resistive boundary condition is used to establish the valid-
ity of this application of the boundary condition and the
numerical formulation. Thus, this technique can be used to
investigate a wide variety of practical transmission line
structures where thin superconducting films are practical
but neither conventional analytic approaches nor tradi-
tional numerical formulations are applicable. In particular,
the formalism can be used to determine the propagation
properties of slotline, coplanar strip, and coplanar wave-
guide.

II. THEORY

The macroscopic theory of electromagnetic fields in
superconductors is well understood [9], [17] and can be
related to simple macroscopic properties. In the short
presentation to follow, it is assumed that the two-fluid
model and the London equations are valid. This means
that the electromagnetic properties of a superconductor
can be accounted for by a temperature-dependent complex
conductivity. Other expressions for a complex conductiv-
ity, based on BCS theory, are available and are discussed
in the Appendix. The BCS derived expressions are theoret-
ically based rather than phenomenologically based and are
applicable to both local and nonlocal superconductors. For
local superconductors and even many nonlocal supercon-
ductors, however, the two-fluid description is usually ade-
quate. In particular, the experimental results to be pre-
sented later are for microstrip lines fabricated from
niobium nitride (NbN), which is a local superconductor.

The current in a superconductor, according to the two-
fluid model, can be written as

(4)

J=J,+ 1,
where J, is the current due to the normal electrons and J,

is the current due to the superconducting electrons. Ohm’s
law applies to the normal electrons,

J,=o,E )
while J is governed by the London equations,
I, E
FPEw (6)
and
VXJ,=- e (7

Assuming an e/* time dependence, the Maxwell equations
and London equations yield a wave equation,

V3H = (}\_2 + jwpeo, — wzuoe)H.
Thus a complex conductivity can be defined:
6 =0, jo (9)

(8)

where

O = (wnu‘0>\2) ﬁl'

- (10)
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The Appendix discusses the two-fluid model as well as
other models of complex conductivity for superconductors.
However, irrespective of the conductivity model used, (8)
can be applied to describe the electromagnetic properties
of a superconductor.

The resistive boundary condition [§8] is an approximate
boundary condition in electromagnetic theory. It has been
used to treat thin lossy dielectric sheets with large conduc-
tivities where the thickness () is much less than a wave-
length. The resistance, in £ /square, of such a sheet is
given by

R=1/0t.

(11)
Solving the electromagnetic field problem for such a sheet
can be reduced from a problem of matching fields at two
surfaces to matching fields at one surface if it is assumed
that :

1

t—0 Ol

0 = o0

=R. (12)
Using the notation that + and — superscripts refer to the
field components of E and H on, respectively, the top and
the bottom of the resistive sheet, the boundary conditions
for the electromagnetic field become

Ax(E*—E")=0 (13)
Ax(HY—H )=1=—(1/R)AX(AXE*) (14)

where A is a unique unit normal vector to the resistive
interface.

In the case of a superconducting thin film where the film
thickness, 7., is small compared to the characteristic
penetration lengths in both the normal and the supercon-
ducting state, the use of this approximate boundary condi-
tion is valid. Specifically, the cases of interest are those for
which ¢ < A and ¢ < §, where § is the classical skin depth,
given by

1/2
8=[2/(wne,)].
Thus, the surface resistance is given by

R=[t(0,— jo,)] . (16)

Even though the resistivity is now a complex quantity, it
will still be referred to as a complex resistive boundary
condition, since the term impedance boundary condition
refers to an entirely different boundary condition [8]. To
demonstrate the applicability of this technique to a simple
but useful and instructive case, the analytic solution to a
parallel-plate transmission line structure will be presented
in the following section.

(15)

III. PARALLEL-PLATE TRANSMISSION LINE

It the following discussion all resistive boundary condi-
tions, R,, are assumed to have an imaginary part, Im(R;),
which is much larger in magnitude than the real part,
Re(R,). The parallel-plate structure, shown in Fig. 1,
consists of two resistive boundary conditions, R, at x =
d/2 and R; at x=—d/2, and is assumed to have an
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€ = €3

Fig. 1. Parallel-plate transmission line with resistive boundary condi-
tions, R, and R, separating dielectric regions ¢, and ¢, at x=d/2
and diclectric regions ¢, and €; at x=—d/2, respectively. Field
quantities were assumed to be functionally independent of y and to be
propagating in the z direction.

electromagnetic wave propagating in the positive z direc-
tion of the form e/(“/7¢?) with Re(a) > 0 and Im(a) <0.
All field components are assumed to be independent of the
y direction. A TM solution will be assumed, ie., H,=
H,=E,=J,=0. Thus the parallel-plate solution derived
will have a field pattern closely approximating a very wide
microstrip or suspended stripline. The half-space x > d /2
is described by ¢, and p,, and the half-space x < —d /2 is
described by €, and p,. The region between the sheets is
described by p, and ¢,. Since the resistive boundary
conditions are penetrable, it will be assumed that ¢, > ¢;
and e, >e¢;. This ensures that the fundamental mode is
primarily between the plates. Components of the electro-
magnetic field which can exist in each of the regions
(i =1,2,3) are given by [11]

Ex — Ci+ek,x + Ci_e_k’x
Ez = _(jki/a)ci+ek'x'+(jki/a)ciieik’x
H,= (a®~k?*)/(awp,)E,

where in each region

(17)
(18)
(19)

k?=a*— o', i=1,2,3.

(20)
The unknown complex constants, C;; and C/, are de-

termined by matching the fields. The value of k; is as-
sumed to be the root given by (20), which has a positive
real part. In regions 1 and 3 only C; and C;', respectively,
can exist if the fields are to be finite. Thus, there exist four
unknown coefficients and two boundary conditions given
by (13) and (14) to be imposed at each resistive boundary.
Solving the four equations simultaneously gives a tran-
scendental equation for a, which is given by

(fi+ £,) g, cosh(k,d) + (g} + fofs) sinh (k,d) =0 (21)
where

fi=8— jono/R,, (22)

gi=(a2_klz)/ki’ (23)

To solve for the fundamental mode, the only mode to be
discussed in this paper, an approximate expression can be
derived which yields very accurate results for very wide
microstrip. For the fundamental mode, k,d < 1. Further-

i=1,3
i=1,2,3.
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more, under situations for which
o /R[> |8,
l(wﬂo)z/(R1R3) I > |g,)?
(21) reduces to an equation for a which is given by

a®= ey [1- j(Ry/opod) = j(Rywpod)]. (26)
If it is further assumed that o, >> ¢,, then a is approxi-
mately given by

a®= e, [1+ N /dt + Ny /dt, | (27)

where A, and A, refer to the penetration depths of the
films at x =d /2 and x = —d /2, respectively. The thick-
nesses of these films are 7, and ¢,, respectively. It should
be noted that a increases rapidly as T— T, due to the
strong temperature dependence of A, given in (Al).

The expression for a given by (26) is independent of
both €; and e,. This implies that, in the reduction of a to
the approximate form, the fields in the exterior dielectric
regions become negligible. This is a result of the special
nature of this particular one-dimensional problem in the
Limits investigated, and is not generally true for supercon-
ducting films which are thinner than a penetration depth.
In fact, analytical results [6] for two parallel-plate struc-
tures with one common thin plate show that significant
coupling through the common plate can occur if the plate
is thinner than a penetration depth. Recently, experimental
measurements have been made [7] which confirm coupling
through thin films arranged in this way.

It is now possible to show that the approximations
which lead to (26) are valid for situations of practical
interest. The assumption that k,d <1 leads, using (20)
and (27), to an upper frequency limit given by

¢y

W< N 5 12
d[(Nyde) +(Nyydr,)]

where c, is the speed of light in an infinite medium of ¢,.
It is now easy to show that (24) and (25) are valid for the
derivative of (26). Noting that €, >¢; and €, > ¢;, it fol-
lows that if

i=1,3 (24)

(25)

(28)

lopo/R,|>[8gaf,  i=1.3 (29)

then (24) and (25) are also satisfied since |g,| > |g;| and
|g,| > |&5]- Using (20) and (27), the relationship in (24) can
be written as

/N> (/) [N /(d)+ Ny (dy)] 7% i=1,2.

(30)
The relationship for an upper frequency limit given by (28)
can now be applied. Hence, (30) can be written as
t

2 i
"N T (%) ()]
ifi=1
i=1.2 jz{i if§=2 (31)

which is obviously true for all real values. Thus, all ap-
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proximations made to arrive at the closed-form expression
of (26) are valid provided that the frequency is small
enough to satisfy (28).

This problem has also been solved for superconducting
layers of arbitrary thickness [11], [12], [17]. Hence, the
solution presented above is a limiting case of existing
expressions. The solution for superconducting films of
arbitrary thickness is given by

a’= "-’2.%52 [1 +(A,/d)coth (1, /A,)

+(Ny/d)coth(t,/05)]. (32)
If z/A <1 then coth(z/A)=A/r and consequently (32)
reduces to the expression just derived using the complex
resistive boundary condition. Furthermore, the frequency
limitation given by (28) is the same as the one given in [11]
under the same thin-film limit.

The losses in the transmission line can come from two
sources: the dielectric loss and the superconductor loss.
The dielectric losses are related directly to the dielectric
loss tangent of the dielectric layer between the supercon-
ducting films. For small values of the dielectric loss tan-
gent and assuming that the superconductor losses are zero,
(27) gives

w NN 2
Im(a) = ;(,uORe(ez))l/z[l+ T + oy
1 2

[Im(e,)/Re(e,)]. (33)
The superconductor losses can also be determined from
(26) assuming that the losses are small and the dielectric
losses are zero. Using (26) and assuming o, > o, and
0, > 0,,, the dominant term of the imaginary part of a
is found to be

Im(a)=—[w?/(2d)](pee,)"”
. ”OolnA‘i/tl+M002nAg/t2
[14+ 22 /(dey) + % /(dry)]*

These expressions ((33) and (34)) agree with earlier expres-
sions [11] if A, >t (i=1,2). These expressions show a
very strong dependence on T as T, is approached.

(34)

IV. MICROSTRIP AND STRIPLINE

The microstrip geometry shown in Fig. 2 can be solved
using a modified spectral-domain immittance [13] ap-
proach based on the transverse resonance method. After
developing the appropriate equations to account for the
complex resistive boundary condition, the numerical re-
sults for the geometry shown in Fig. 2 will be compared to
the results for the infinitely wide parallel-plate case, which
was presented in the previous section.

The general formulation [18] begins with the description
of the electric field, E, given in terms of a dyadic imped-

ance Green’s function, Z, and the currents, J. Hence E is
given by

E(r) = / Z(r, ¥)-J(¢) v (35)
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€1

y=-2

2

Fig. 2. Geometry of the problem which was numerically implemented.

A finite width (w) strip with a resistive boundary condition, R;, is

separated from a perfectly conducting ground plane by a dielectric, €,
of thickness 4 /2.

PERFECT CONDUCTOR y="5

where the integral is over_the currents in the strip. The
dyadic Green’s function, Z(r,r’"), describes the dielectric
layer structure and also takes into account the perfectly
conducting ground plane. Since the structure is infinite in
the propagation direction, z, the electric field at the strip
interface, from (35), reduces to

E0) = [ 200 d 66)
—w/2

where J(y) is the vector surface current. A generalization
of earlier work [13] must now be made to account for the
boundary condition on the strip. Using (13) and (14) for
the values of the tangential electric field on the strip, two
coupled equations for the surface currents, J_ (y) and
J,,(»), can be derived from (36) for —w/2 <y <w/2 and
are given by

w/2
f_ W/Z[Zyy(y’ I3+ Z,.(5, yl)Jsz(y/)] ay’

=E,(y) =RI,(») (7)

and
W/2 I4 ! ; 4 ’
J 200+ 25 ) 1)

=E.(y)=RJ.(y). (38)

A one-dimensional Fourier transform is defined as
~ o0
A@) = [ A()edy (39)

where the ~ over a variable denotes the Fourier trans-
form of that variable without the ~. Since the current
components are identically zero for y<—w/2 and y >
w/2, the left-hand sides of (37) and (38) present no prob-
lems in performing the Fourier transforms. For the riglhit-
hand sides it should be noted that the electric field is
nonzero everywhere. The tangential components of the
electric field on the plane x = 0 are defined as

EzO = Est + EZZO

(40)
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and
E,= E;O +Ej, (41)
where
B E,, —w/2<y<w/2 _
«07 0, y<—w/2and y>w/2 a=rz
(42)
and
pe - 0, —w/2<y<w/2 _
“©T\E, y<-w/2and y>w/2 a=y,z

(43)

Therefore, the Fourier transforms of (37) and (38) are
given by

[Z,,()= R] 7, () + Z,.() T (2) = Ec(¥)  (44)
Z ()T () +[Z..(5) - R] T () = E£(£). (45)

The forms of (44) and (45) are identical to previous formu-
lations if R is identically zero. Thus, by modifying the
Fourier-transformed impedance Green’s functions so that
z:yy(g) and Z,({) are replaced by Zyy(§)— R and
Z,.(§)— R, respectively, the problems of interest can be
solved using established numerical techniques.

The elements of the dyadic impedance Green’s function
in the transform domain are determined using the
spectral-domain immittance approach [14]. The currents
are expanded in a set of basis functions [16] under the
assumption that perfect electric walls exist at y =+ b/2
such that

3

)_1/2 a, cos(2mmy/w),

0

Jo(y) = (1= (@y/w)’

It

0<y<w/2 (46)

50 =01-@yw?) "L

3
“M§

b, sin(2may/w),
L .

0<y<w/2 (47)

where a,, and b,, are unknown and each term satisfies the
edge condition. The Fourier transforms of (46) and (47)
are then substituted into (44) and (45). A Galerkin ap-
proach [16] was used to construct a determinant equation
for the unknown complex propagation constant, a. The
computer code was a modified version of the computer
code used in [15].

V. EXPERIMENTAL MEASUREMENTS

Experimental results have been reported [3], [4] for
microstrip lines, as shown in Fig. 3, operating in a L,
dominated regime. A short summary of the geometry,
fabrication, and measured results is presented below to
facilitate the comparison of the analytical and the numeri-
cal approach to the actual measured results. The devices
consisted of a NbN ground plane and a NbN strip sep-
arated by a Si dielectric. A ground plane was made by RF
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QUARTZ
SUBSTRATE

Fig. 3. Geometry of the microstrip on which experimental measure-

ments were made.

sputtering 150 A of NbN onto a quartz substrate. The
dielectric consisted of an RF-sputtered thin film of hydro-
genated Si which was deposited in two steps for a total
thickness of 450 A. The strip was deposited in the same
fashion as the ground plane but was only 140 A thick. This
top film was then patterned to define 25-um-wide micro-
strip lines of various lengths.

Extensive time- and frequency-domain measurements
have been made with these devices [3], [4] and their behav-
ior was found to correlate very well with calculations of
the parallel-plate waveguide case for superconducting
layers of arbitrary thickness (32). This is not surprising,
considering that the width-to-height ratio of the microstrip
is over 500 and that fringing field contributions should be
negligible. In particular, the temperature dependence of
the propagation constant follows the behavior predicted by
the two-fluid model to within the experimental accuracy.
Assuming two 145 A NbN films, the parameters of the
lines were determined to be 7,=12.15 K, A,=3200 A,
and eg =10.5. These values were derived during earlier
work [4], where a best fit of the measured response as a
function of frequency and temperature was made to a
circuit model. They are all reasonable values for the thin
sputtered films. Losses in the lines were limited by the
dielectric.

VI. REesuLTS

Correlation between analytical, numerical, and experi-
mental results was excellent for these structures. When
comparing analytical, numerical, and experimental results,
it should be noted that there existed some slight dif-
ferences in the geometries that were solved. The analytical
results, based on (27), considered the case of an infinitely
wide parallel-plate waveguide where all fields were as-
sumed to be independent of the transverse y direction.
Experimental results were obtained from the microstrip
configuration shown in Fig., 3 at 0.5 and 1.0 GHz. Since
the width-to-height ratio of the microstrip was greater than
500, the parallel plate was expected to provide a good
approximation for the dominant mode.

€1

Fig. 4. Equivalent suspended stripline geometry of Fig. 2 using image
theory of the perfectly conducting ground plane.

The structure solved numerically was actually a different
geometry from both the analytical and the experimental
geometry. For the numerical solution a strip of finite width
was modeled as a complex resistive boundary condition
separated from a perfectly conducting ground plane by a
dielectric layer as shown in Fig. 2. In order to have the
numerical geometry approximate the analytical geometry,
the perfectly conducting ground plane was treated as an
image plane, which for a very wide strip will approach the
parallel-plate geometry. In addition, this geometry is easier
to implement numerically than the actual microstrip con-
figuration shown in Fig. 3. The resultant transmission line
was a suspended stripline as shown in Fig. 4 with a
dielectric thickness which was twice the distance between
the strip and the perfectly conducting ground plane of the
numerical geometry. Once again, due to the very large
value of the width-to-height ratio, the approximation
should be quite accurate. Of course, the characteristic
impedance value would differ by a factor of two.

A comparison of the Re(a) at 1.0 GHz for the analyti-
cal, numerical, and experimental data is shown in Fig. 5 as
a function of temperature for the geometries that most
closely approximated the experimental case. In each situa-
tion the superconducting and dielectric film parameters
mentioned in the previous section were used in the analyti-
cal and numerical models. For the numerical case the
width of the line was set at 25 pm and the first five terms
of the basis function expansions for the currents were
used. As can be seen from Fig. 5, the agreement between
all three cases was excellent. The slight differences were
attributed to the small discrepancies of the geometries, to
the experimental accuracy, and to numerical limitations. In
all cases presented, the quantity b/w was chosen so there
was minimal sensitivity on the propagation coefficient.

The above case demonstrates the validity of the numeri-
cal formulation that has been developed. The correlation
of the analytical and numerical results for geometries
which are not as severe with respect to the width-to-height
ratio was also good but, as expected, deteriorated as the
width-to-height ratio approached unity. When the dielec-
tric thickness of the suspended stripline was increased to
4.5 pm (a factor of 100 increase) a situation existed where
the kinetic inductance contribution was of the same order
as the magnetic inductance contribution. Values of Re(a)
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Fig. 5. A comparison of the experimental (o), numerical (»), and ana-
Iytical ( ) results as a function of temperature is shown for
geometries which most closely approximate the experimental case. The
value of b/w is 4.0.
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Fig. 6. A temperature-dependent comparison of the real part of the
propagation coefficient is shown between the numerical solutions
for superconducting stripline (») and perfectly conducting stripline
(————). The strip is 25 pm wide, the dielectric thickness is 4.5 pm,
and b/w is 4.0. Also plotted are the analytical solutions to the
superconducting ( ) and perfectly conducting (----) parallel-plate
cases.

14.0

versus temperature for this case are shown in Fig. 6 at 1.0
GHz. The analytical parallel-plate results are compared to
the numerical results using five terms of the basis function
expansion. The agreement was within a few percent even
in this case, where the width-to-height ratio (about 5.5) is
not nearly as severe. In situations where the width-to-height
ratio is not too large, there usuvally exist some fringing
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parallel-plate solution (———). The b/w value is 4.0.

fields which tend to be influenced by the lower value of the
relative permittivity of dielectric layer above the strip. This
usually results in a lower value of Re(a) than would
otherwise be expected when compared to the parallel-plate
situation. Interestingly, the numerical values of Re(a)
were slightly higher than the analytical prediction. It is
possible that this phenomenon was due to the singular
behavior of the currents at the edge of the strip, which may
increase the kinetic inductance coniribution over that pre-
dicted by the analytical solution and result in a larger
value of Re(a). For comparison purposes, the numerical
solution for a perfectly conducting strip at 1.0 GHz and
the analytical solution for a perfectly conducting parallel-
plate waveguide are also plotted in Fig. 6. It can be seen
that the propagation constant for the strip is less than the
parallel-plate case, as would be expected from the fringing
field behavior and the lower relative dielectric constant of
the medium above the strip.

A study of the convergence of the numerical solution as
a function of the number of terms of the basis function
expansion has been undertaken. Results, shown in Fig. 7,
demonstrate that the solution monotonically approaches
the value predicted by the analytical parallel-plate model.
The particular case presented here used the same geometry
and film parameters as the case presented in the above
paragraph, although other cases behaved similarly. In all
situations examined to date, the convergence has occurred
within four (o six terms of the current basis function
expansion, Using more than six terms yields no further
improvement and sometimes, if the number of basis func-
tion terms exceeds about ten, the solution can diverge.
This is attributed to accumulated numerical errors.

As another example, the results at 1.0 GHz of a geome-
try where the width-to-height ratio is approximately unity
are presented in Fig. 8. The dielectric thickness and film
parameters were kept the same as in the previous case, but
the width of the strip was reduced to 5 pm. Convergence
behavior was similar to that of the earlier cases. As the
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Fig. 8. A temperature-dependent comparison of the real part of the
propagation coefficient is shown between the numerical solutions
for superconducting stripline (+) and perfectly conducting stripline
( ). The strip width is 5 pm, the dielectric thickness is 4.5 pm,
and the b/w value is 20.0. Also plotted are the analytical solutions to
the superconducting (— ———) and perfectly conducting (----) paral-
lel-plate cases.

width of the strip decreased the accuracy of the parallel-
plate model was expected to decrease. Indeed, this was the
case, as can be seen in Fig. 8. Numerical results for the
stripline predict a propagation constant about 12 percent
larger than that predicted by the parallel-plate model. A
comparison can be made to the perfectly conducting situa-
tions, which are also shown in Fig. 8. As before, the
numerical value for the superconducting strip, rather than
being smaller than the parallel-plate prediction due to
fringing fields, was larger than the parallel-plate predic-
tion. This was in contrast to the perfectly conducting cases,
where the propagation constant of the strip was less than
that for the parallel-plate waveguide. Such behavior was
even more pronounced than in the case shown in Fig. 7.
This was attributed to a greater percentage of the currents
being in the singular regions at the edges of the strip for a
narrower strip. As expected, the numerical results were
virtually unchanged from 0.5 to 5.0 GHz.
Superconducting losses were also calculated and the
agreement with the parallel-plate theory was good. In the
cases considered so far, the dielectric loss was dominant
since this was the limiting loss mechanism from the experi-
mental results. In an artificial case, that of no dielectric
loss, the behavior of the superconducting loss as a function
of temperature was determined numerically and is shown
in Fig. 9. Also shown is the theoretical behavior of Im(a)
versus temperature for the parallel-plate case using (34).
The agreement between the finite width and infinite width
cases was very good. Except for the loss terms, the film
parameters and geometry were the same as those described
above to calculate the curves of Fig. 6. The strong depen-
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Fig. 9. The temperature dependence of the superconducting losses
(In[Im(a))) is plotted to compare the analytical predictions using the
parallel-plate waveguide ( ) and the numerical results (¢) from the
suspended stripline case. The two-fluid model for complex conductivity
was used. The strip width was 25 pm, the dielectric thickness was 4.5
pam, and the b/w value is 4.0. The value of ¢, was chosen to be
1X10° (©-m)~ ! and the dielectric loss was set to zero.

dence of the loss on T as T— T, can be expected from
(A2) and (A3).

VIL

A novel use of the resistive boundary condition in the
solution of electromagnetic transmission and scattering
problems involving thin superconducting films has been
presented. The solution to the parallel-plate waveguide
problem was presented and was shown to agree with the
solution using more traditional approaches. The use of this
boundary condition leads to a modification in the
Fourier-transformed coupled integral equation formula-
tion of planar transmission line problems. The Fourier-
transformed dyadic impedance Green’s function of the
coupled integral equations was modified by the complex
resistive boundary condition. To document the power of
this approach, the microstrip problem was solved numeri-
cally using the Galerkin method. Comparisons between the
analytical, numerical, and theoretical results showed excel-
lent agreement.

The boundary condition and numerical formulation pre-
sented in this paper are also applicable to slotline, coplanar
stripline, and coplanar waveguide, where conventional ap-
proaches are inadequate since they are unable to treat the
diaphanous nature of the thin superconductor. Since the
propagation constants of these transmission lines are vari-
able with temperature (and, in principle, electronically),
they have many potential uses as microwave components
such as tunable filters and variable phase shifters. Future
work will focus on determining the propagation properties
of these transmission lines in addition to microstrip.

CONCLUSIONS
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APPENDIX

There exist several sets of expressions to describe the
complex conductivity of a superconductor. Several of these
are phenomenological including the two-fluid models of
Gorter and Casimir and the Ginzburg—Landau model [9].
The two-fluid model will be emphasized in this paper since
it is a good model for the observed behavior of the
superconducting thin films used in the experimental part
of the work. The Ginzburg-Landau model is applicable
for T very close to but less than 7, but this is less useful
since the transmission structures of interest become quite
lossy at these temperatures. The BCS derived model for
complex conductivity of Mattis and Bardeen is theoreti-
cally based and can be applied to both local and nonlocal
superconductors. Any of these particular models for com-
plex conductivity can be used to calculate the resistive
boundary condition.

In the two-fluid model, A can be related to the density
of the super electrons by

N =m /(o) (A1)
with n  being the density of the superconducting elec-
trons. The temperature dependencies of the conductivities
for the two-fluid model are given by [9] from the tempera-
ture dependencies of the normal and super electron densi-
ties:

and

0= 1= (T/T)"] [ (6m02) (A3)
where g, is the conductivity just above the critical temper-
ature, T, and A, is the penetration depth at 0.0 K. A more
accurate model, using the BCS derived conductivity [19],
gives :
On

LI ;c;j:odE[F(E)— F(E + ho)]

onc

E?+ A+ hwE
(E? = A2)[(E + ho)*~ 2]

1/2

1 how—A
+-ﬁf dE[1-2F(ho - E)]

A
hwE — E*— A? Ad
(52— ) [(ho - E) - 2] (A9

OSC 1 A

‘—J;:—%—(—‘)-'[A_hw’_AdE[l—ZF(E+hw)]
E?2+ A’ + hoE A5
(8- E)P[(E+ hay- 2] 49
where

F(E)=[1+exp(E/kT)] " (A6)

and A= A(T) is the energy gap parameter. The second
integral of (A4) is zero when %w < 2A. The lower limit of
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(A5) becomes — A when #w>2A. The relationship be-
tween the two theories can be established by noting [20]
that for the local theory

A= limo(jw,uoor) 2 (A7)
By choosing Ay, Ay=A(T=0), and o,, to satisfy
No= [h/( '77'.‘Lo"ncAo)]1/2 (A8)

the two-fluid model and the Mattis—Bardeen theory can be
compared. -
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